Crops for biogas production; yields, suitability and energy balances

Dr. Andrew Salter
University of Southampton, UK

15th European Biomass Conference
Berlin 8th May 2007
Workshop 2 – Biogas: Energy throughout the whole world
overview

which crop should I grow?

• methane potentials
• crop yields
• crop criteria
• digestate
• energy balances
• legislation
which crop should I grow?

- want maximum methane yield per hectare of crop

\[
\text{yield of methane / ha} = \text{methane potential} \times \text{crop yield} \times \text{methane yield/kg ODM} \times \text{yield of ODM/ha}
\]
crop yields

• vary according to:
 – geographical location
 • climate
 • soil type
 – growth stage at time of harvest
yields (MT/ha)

wheat

maize

(data source FAO/AGLL)
growth stage at harvest

need to consider:
• total biomass yield
• moisture content
• storage
• lignin
• digestibility
• following crop

crop criteria

- annual vs perennial
- mono crops
- mixed crops and crop rotations
- digestibility
annual vs perennial

- annual crops
 - planted and harvested every year
 - e.g. wheat, maize, sugar beet, beans, sunflowers

- perennial crops
 - planted one year, harvested over a number of years
 - e.g. perennial ryegrass, miscanthus
mono crops

- one crop species grown year after year
- mostly annual - sown and harvested in the same 12 month period
- can be grown in as little as 3 months
- e.g. wheat, maize, rice
effects of mono cropping

- high nutrient requirement
- build up soil borne pests and diseases
- bare soil
 - nutrient run off
 - erosion
- nutrient depletion
- damage to soil structure
- diversity of plant and animal life
multiple cropping systems

- crop rotations
- inter crops
- undersown crops
- legume mixes e.g. vetch/oats, beans/wheat

- increase crop production through the use of multiple crops per year
crop rotations

mono-crop
wheat wheat wheat wheat wheat wheat

2 year rotation
maize soybean maize soybean maize

4 year rotation
wheat barley oilseed clover wheat

year 1 year 2 year 3 year 4 year 5

a crop rotation for energy

winter wheat forage rye maize wheat

Oct Aug Sept March April Oct
Crops for Biofuel Production

For Biodiesel
- oilseed rape
- sunflower
- linseed
- soya
- peanut

For Bioethanol
- wheat
- sugar beet
- maize
- sugar cane

For Biogas
- barley
- cabbage
- carrot
- cauliflower
- clover
- elephant grass
- flax
- fodder beet
- giant knotweed
- hemp
- horse bean
- Jerusalem artichoke
- kale
- lucerne
- lupin
- maize
- marrow kale

- meadow foxtail
- miscanthus
- mustard
- nettle
- oats
- pea
- potato
- rape
- reed canary grass
- rhubarb
- ryegrass
- sorghum
- sugar beet
- triticale
- turnip
- verge cuttings
- fetch
- wheat

IEA Bioenergy

15th European Biomass Conference
Berlin 8th May 2007
energy balances

crop production
digestion
digestate disposal
crop production

- fuel
- fertiliser & pesticides
- equipment
- irrigation
- labour

– direct and indirect energy requirements
energy requirements in crop production

IEA Bioenergy

15th European Biomass Conference
Berlin 8th May 2007
digestion process

digester

electricity

heat

biogas

digestate
energy requirements

forage maize

crop production 27%
fertilizer 29%
parasitic heat 22%
parasitic electricity 4%
embodied in digester 14%
digestate disposal 3%
crop transport 1%
digestate

- contains most of the nutrients from the original feedstock
- improved nutrient availability
- can be separated into liquid and solid components
- high fertiliser value
digestate as fertiliser

mineral fertiliser
- digestate disposal: 3%
- embodied in digester: 14%
- parasitic electricity: 4%
- parasitic heat: 22%
- crop transport: 1%
- fertilizer: 28%
- crop production: 33%
- 14% parasitic heat
- 27% parasitic electricity
- 17% embodied in digester
- 14% digestate disposal
- 3% crop transport
- 1% fertilizer
- 28% crop production
- 28% parasitic heat
- 22% parasitic electricity
- 19% embodied in digester
- 4% digestate disposal
- 4% crop transport
- 4% fertilizer
- 37% crop production

50% N from digestate fertiliser
- digestate disposal: 3%
- embodied in digester: 17%
- parasitic electricity: 5%
- parasitic heat: 27%
- crop transport: 1%
- fertilizer: 33%
- crop production: 33%
- 29% parasitic heat
- 6% parasitic electricity
- 19% embodied in digester
- 3% digestate disposal
- 1% crop transport
- 14% fertilizer
- 37% crop production

100% N from digestate fertiliser
- digestate disposal: 4%
- embodied in digester: 19%
- parasitic electricity: 6%
- parasitic heat: 29%
- crop transport: 1%
- fertilizer: 4%
- crop production: 37%
- 1% parasitic heat
- 6% parasitic electricity
- 19% embodied in digester
- 4% digestate disposal
- 1% crop transport
- 4% fertilizer
- 37% crop production

Energy requirement per hectare
- mineral fertiliser: [Data]
- 50% digestate: [Data]
- 100% digestate: [Data]
CO$_2$ and carbon sequestration

- minimising fossil fuel use minimises CO$_2$ released
- perennial crops increase soil sequestration of carbon
- in a crop based AD system CO$_2$ released is CO$_2$ absorbed by the plants
legislation

- slurry and digestate storage and application
- subsidies, single area payment
- set-aside
- animal by-products
- waste and waste disposal
conclusion
– which crop should I grow?

• simplest answer is – the one that gives the best yield
• there is no single ‘best crop’
• what grows best in your fields?
• what will give the most sustainable crop production
• need to consider economics vs global impacts
Thank you

www.cropgen.soton.ac.uk

coop-funded by the European Commission within the Sixth Framework Programme